T.D. #4

I- Réseau réciproque et construction d'Ewald à deux dimensions

On considère un édifice cristallin à 2D caractérisé par un réseau de Bravais rectangulaire simple et un motif composé d'un atome A en (0,0) et d'un atome B en (1/2, 1/2).

A- En partant d'un édifice cristallin orthorhombique simple montrer que le réseau réciproque du réseau direct à 2D est un faisceau de droites parallèles dont on représentera la trace dans le plan a*, b*. Indexer les différents nœuds de l'espace réciproque et construire la première zone de Brillouin.

B- On éclaire cet édifice à l'aide d'un rayonnement de longueur d'onde λ dirigé selon la rangée [1,0] de l'espace direct. Donner les deux relations vérifiées lors de la diffusion élastique du rayonnement. Comment ces conditions se traduisent-elles dans l'espace réciproque (construction d'Ewald). Préciser les réflexions possibles pour $\lambda = 1.8A$, a=3A et b=4A. et donner le premier angle de Bragg possible.

C- Dans le cas général d'un rayonnement de longueur d'onde et de direction quelconque, l'amplitude du faisceau diffusé dans la direction K peut s'écrire :

$$S_K = \sum_{i} e^{-i\vec{K}.\vec{r_i}}.S_K^{motif} S_K^{motif} = \sum_{j} f_j(K)e^{-i\vec{K}.\vec{d}j}$$

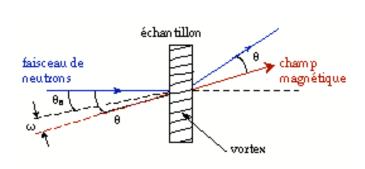
où r_i représente la position des nœuds du réseau de Bravais, d_j la position des différents atomes du motif et f_i est un coefficient dépendant de la nature chimique des atomes.

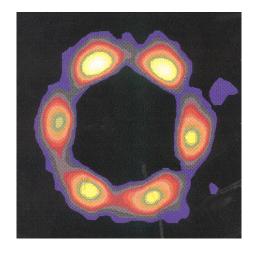
Donner l'expression de S_K^{motif} dans le cas du réseau rectangulaire de la question A. Que se passe-t-il lorsque A = B, que deviennent alors le réseau de Bravais et le réseau réciproque.

II- Diffraction de neutrons sur le réseau de vortex

Lorsqu'un matériau supraconducteur (dit de type II) est soumis à un champ magnétique H (H_{c1} < H < H_{c2}), ce champ pénètre dans le matériau sous la forme de "tubes" de flux quantifiés

(parallèles au champ) appelés *vortex*. A bas champ et basse température, ces vortex se répartissent selon un réseau dont on cherchera à déterminer la symétrie. Pour cela, on effectue une mesure de diffraction à l'aide d'un faisceau de neutrons de longueur d'onde $\lambda_N \sim 10 A$. La géométrie de l'expérience est représentée ci-dessous.





Géométrie d'une mesure de diffraction de neutrons

Cliché de diffraction de neutrons obtenu dans un supraconducteur ((K,Ba)BiO₃) à 2K et 0.1T (ILL – Grenoble)

- A. Commenter la figure de diffraction obtenue (quelle est la symétrie du réseau de vortex). Le maximum d'intensité est obtenu lorsque $\theta = \theta_B$, quelle relation relie alors θ_B , λ_N et le pas a_0 du réseau (condition de Bragg). Que peut-on dire de a_0 (par rapport à λ_N).
- B. a₀ est en fait de l'ordre de 1000A (à 0.1T). Déterminer le réseau réciproque associé au réseau de vortex. Représenter ce réseau ainsi que la sphère d'Eswald, comment a-t-on du procéder pour obtenir la figure de diffraction ci-dessus.
- C. La figure ci-contre représente l'intensité diffractée en fonction de l'angle θ lorsque l'on s'écarte de la condition de Bragg (appelée "rocking curve"). Quel type d'information obtient-on de cette courbe.

